References for the book Grokking Machine Learning
General references
- Github repository: www.github.com/luisguiserrano/manning
- YouTube videos: www.youtube.com/c/LuisSerrano
- General information: https://serrano.academy
- Book information: https://serrano.academy/grokking-machine-learning
Courses
- Udacity machine learning nanodegree: https://www.udacity.com/course/machine-learning-engineer-nanodegree–nd009t
- Coursera machine learning course: https://www.coursera.org/learn/machine-learning
- Coursera machine learning specialization (University of Washington): https://www.coursera.org/specializations/machine-learning
- End to end machine learning: https://end-to-end-machine-learning.teachable.com/courses
Blogs and YouTube channels
- Machine learning videos by Brandon Rohrer: https://www.youtube.com/user/BrandonRohrer
- StatQuest with Josh Starmer: https://www.youtube.com/user/joshstarmer
- Chris Olah blog: https://colah.github.io/
- Jay Alammar blog: https://jalammar.github.io/
- Alexis cook blog: https://alexisbcook.github.io/
- Dhruv Parthasarathy blog: https://medium.com/@dhruvp
- 3blue1brown: http://youtube.com/c/3blue1brown
- Machine learning mastery: https://machinelearningmastery.com
Books
- Pattern Recognition and Machine Learning by Christopher Bishop: https://www.springer.com/gp/book/9780387310732
Chapter 1
Videos
- General machine learning videos:
https://serrano.academy/general-machine-learning/ - A friendly introduction to machine learning video: www.youtube.com/watch?v=IpGxLWOIZy4
- Monty Python spam sketch: www.youtube.com/watch?v=zLih-WQwBSc
Chapter 2
Datasets:
- MNIST dataset: http://yann.lecun.com/exdb/mnist/
- CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
Videos
- Supervised machine learning videos:
https://serrano.academy/linear-models/ - Unsupervised machine learning videos:
https://serrano.academy/unsupervised-learning/ - Generative machine learning videos:
https://serrano.academy/generative-models - Reinforcement learning videos: https://serrano.academy/reinforcement-learning
- Deep learning videos: https://serrano.academy/neural-networks
Books
- Grokking Deep Reinforcement Learning by Miguel Morales: https://www.manning.com/books/grokking-deep-reinforcement-learning
Courses
- UCL course on reinforcement learning, by David Silver (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)
- Udacity Deep Reinforcement Learning Nanodegree Program. (https://www.udacity.com/course/deep-reinforcement-learning-nanodegree–nd893)
Chapter 3
Code
Datasets
- Hyderabad housing dataset: https://www.kaggle.com/ruchi798/housing-prices-in-metropolitan-areas-of-india (License: CC0: Public Domain)
Videos
- Linear regression video: https://www.youtube.com/watch?v=wYPUhge9w5c
- Polynomial regression video: https://www.youtube.com/watch?v=HmmkA-EFaW0
Chapter 4
Code:
- Github repo: https://github.com/luisguiserrano/manning/tree/master/Chapter_4_Testing_Overfitting_Underfitting
Videos
- Machine learning: Testing and Error metrics: https://www.youtube.com/watch?v=aDW44NPhNw0
- Ridge (L2) regression (StatQuest): https://www.youtube.com/watch?v=Q81RR3yKn30
- Lasso (L1) regression (StatQuest): https://www.youtube.com/watch?v=NGf0voTMlcs
Chapter 5
Code
Datasets
- IMDB movie reviews dataset: https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset (License: CC0: Public Domain)
Videos
- Logistic regression and the perceptron algorithm video: https://www.youtube.com/watch?v=jbluHIgBmBo
Chapter 6
Code
Videos
- Logistic regression and the perceptron algorithm video: https://www.youtube.com/watch?v=jbluHIgBmBo
Chapter 7
Videos
- Machine learning: Testing and Error metrics: https://www.youtube.com/watch?v=aDW44NPhNw0
Chapter 8
Code
Datasets
- Spam filter dataset: https://www.kaggle.com/karthickveerakumar/spam-filter https://www.kaggle.com/karthickveerakumar/spam-filter
Videos
- Naive Bayes: https://www.youtube.com/watch?v=Q8l0Vip5YUw
Chapter 9
Code
Datasets
- Admissions dataset: https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict.csv
Mohan S Acharya, Asfia Armaan, Aneeta S Antony : A Comparison of Regression Models for Prediction of Graduate Admissions, IEEE International Conference on Computational Intelligence in Data Science 2019. (License: CC0: Public Domain)
Videos
- Decision trees (StatQuest): https://www.youtube.com/watch?v=7VeUPuFGJHk
- Regression decision trees (StatQuest): https://www.youtube.com/watch?v=g9c66TUylZ4
- Decision trees (Brandon Rohrer): https://www.youtube.com/watch?v=9w16p4QmkAI
- Gini impurity index: https://www.youtube.com/watch?v=u4IxOk2ijSs
- Shannon entropy and information gain: https://www.youtube.com/watch?v=9r7FIXEAGvs
Blog posts
- Shannon entropy, information gain, and picking balls from buckets: https://medium.com/udacity/shannon-entropy-information-gain-and-picking-balls-from-buckets-5810d35d54b4
Chapter 10
Code
Datasets
- MNIST dataset. Deng, L. (2012). The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6), 141–142.
- Admissions dataset: https://www.kaggle.com/mohansacharya/graduate-admissions?select=Admission_Predict.csv
Mohan S Acharya, Asfia Armaan, Aneeta S Antony : A Comparison of Regression Models for Prediction of Graduate Admissions, IEEE International Conference on Computational Intelligence in Data Science 2019
Videos
- Deep learning and neural networks: https://www.youtube.com/watch?v=BR9h47Jtqyw
- Convolutional neural networks: https://www.youtube.com/watch?v=2-Ol7ZB0MmU
- Recurrent neural networks: https://www.youtube.com/watch?v=UNmqTiOnRfg
- How neural networks work (Brandon Rohrer): https://www.youtube.com/watch?v=ILsA4nyG7I0
- Recurrent neural networks (RNN) and Long short-term memory (LSTM) (Brandon Rohrer): https://www.youtube.com/watch?v=WCUNPb-5EYI
Books
- Grokking Deep Learning, by Andrew Trask: https://www.manning.com/books/grokking-deep-learning
- Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville: https://www.deeplearningbook.org/
Courses
- Udacity deep learning course: https://www.udacity.com/course/deep-learning-pytorch–ud188
Blog posts
- Using transfer learning to classify images with Keras, by Alexis Cook: https://alexisbcook.github.io/2017/using-transfer-learning-to-classify-images-with-keras/
- Global average pooling layers for object localization, by Alexis Cook: https://alexisbcook.github.io/2017/global-average-pooling-layers-for-object-localization/
- A brief history of CNNs in image segmentation: From R-CNN to Mask R-CNN, by Dhruv Parthasarathy: https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4?gi=baf5b651aa4f
- Neural networks, manifolds, and topology, by Chris Olah: https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
- Understanding LSTM networks, by Chris Olah: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- How GPT3 works – Visualizations and animations, by Jay Alammar: https://jalammar.github.io/how-gpt3-works-visualizations-animations/
- How to configure the learning rate when training deep learning neural networks, by Jason Brownlee: https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks
- Setting the learning rate of your neural network, by Jeremy Jordan: https://www.jeremyjordan.me/nn-learning-rate/
- Selecting the best architecture for artificial neural networks, by Ahmed Gad: https://heartbeat.fritz.ai/selecting-the-best-architecture-for-artificial-neural-networks-7b051f775b4
Tools
- TensorFlow playground: https://playground.tensorflow.org/
Chapter 11
Code
- Github repo: https://github.com/luisguiserrano/manning/tree/master/Chapter_11_Support_Vector_Machines
Datasets
- Hyderabad housing dataset: https://www.kaggle.com/ruchi798/housing-prices-in-metropolitan-areas-of-india (License: CC0: Public Domain)
Videos
- Support vector machines: https://www.youtube.com/watch?v=Lpr__X8zuE8
- The polynomial kernel (StatQuest): https://www.youtube.com/watch?v=Toet3EiSFcM
- The radial (RBF) kernel (StatQuest): https://www.youtube.com/watch?v=Qc5IyLW_hns
Blog posts
- Kernels and feature maps: Theory and intuition, by Xavier Bourret Sicotte: https://xavierbourretsicotte.github.io/Kernel_feature_map.html
Chapter 12
Code
Videos
- Random forests (StatQuest): https://www.youtube.com/watch?v=J4Wdy0Wc_xQ
- AdaBoost (StatQuest): https://www.youtube.com/watch?v=LsK-xG1cLYA
- Gradient boosting (StatQuest): https://www.youtube.com/watch?v=3CC4N4z3GJc
- XGBoost (StatQuest): https://www.youtube.com/watch?v=OtD8wVaFm6E
Articles and blog posts
- Explaining AdaBoost, by Robert Schapire: http://rob.schapire.net/papers/explaining-adaboost.pdf
- XGBoost: A Scalable Tree Boosting System, by Tiani Chen and Carlos Guestrin. KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference onKnowledge Discovery and Data Mining, August 2016, Pages 785-794. https://doi.org/10.1145/2939672.2939785.
- Winning the Netflix prize: A summary, by Edwin Chen: https://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/
Chapter 13
Code
Datasets
- Titanic dataset: https://www.kaggle.com/c/titanic/data